
Intel® Compilers for Linux*: Application Porting Guide

Abstract

This paper describes application porting when using Intel® Compilers for Linux*. The Intel C/C++ compiler

is compatible to the GNU* compilers in terms of source, binary and command-line compatibility. The Intel®

C/C++ and Fortran Compilers help make your applications run at top speed on Intel's platforms, including

those based on the IA-32, Intel® 64 and Intel® Xeon Phi architectures. The compilers also provide

compatibility with commonly used Linux* software development tools.

White Paper

Om P Sachan

Developer

Products

Division

Intel

Corporation

Intel® Compilers for Linux*: Application Porting Guide

2

Table of Contents
 ... 1

Introduction .. 4

Setting the Intel Compiler Environment ... 4

Modifying makefiles ... 5

Using Optimization .. 6

Targeting Intel® Processors .. 7

Modifying Configurations ... 7

Using the Intel® Libraries .. 8

Using Optimized Math Function Library (libimf) ... 8

Short Vector Math Library (libsvml).. 8

libirc .. 8

Compatibility with GNU Compiler .. 8

C and C++ Source Compatibility .. 10

OpenMP* Compatibility and Interoperability ... 11

Binary Compatibility ... 11

Linking and Libraries ... 13

Linking C Language with Intel® Compiler and gcc Compiler .. 13

Intel® Compiler Linking Conventions/Changing Default Linking Behavior 16

Build Environment Enhancements ... 17

Command Line Options .. 17

Intel® Fortran Compiler ... 18

Customer Feedback .. 18

References .. 19

Intel® Compilers for Linux*: Application Porting Guide

3

Intel® Compilers for Linux*: Application Porting Guide

4

Introduction

The Intel® Compiler XE 2016 interoperates with GNU Compilers and tools to provide very high

levels of performance across the full spectrum of Intel® processor technologies. You can rebuild

your existing GNU compiler applications with the Intel compilers without having to make signficant

source code changes by simply replacing the GNU compiler with the correspoinding Intel compiler.

These compilers correspond to each other in the following ways:

LLanguage

I Intel® Compiler GCC* Compiler

 C icc Gcc

 C++ icpc g++

 Fortran ifort Gfortran

In many cases, porting applications from gcc to the Intel® C++ Compiler can be as easy as

modifying your makefile to invoke the Intel® C++ Compiler instead of gcc. Using the Intel® C++

Compiler typically improves the performance of your application, especially for those applications

that run on Intel processors. In many cases, your application's performance may also show

improvement when running on non-Intel processors. When you compile your application with the

Intel® C++ Compiler, you have access to:

 compiler options that optimize your code for the latest Intel® architecture processors.

 advanced profiling tools (PGO) similar to the GNU profiler, gprof.

 high-level optimizations (HLO).

 interprocedural optimization (IPO).

 Intel intrinsic functions that the compiler uses to inline instructions, including Intel® SSE2,

Intel® SSE3, SSSE3, Intel® SSE4 Intel® AVX and Intel® AVX-512.

 a highly-optimized, highly accurate Intel® Math Library .

The Intel® C++ Compiler creates object files that are binary compatible with object files that are

created by gcc. As a result, when you are porting your applications from gcc to icc, you should not

have to re-build the libraries that were built with gcc. The Intel® C++ Compiler also supports many

of the same compiler options, macros, and environment variables that you already use in your gcc

work.

Setting the Intel Compiler Environment

The Intel® C++ Compiler relies on environment variables to locate compiler binaries, libraries, man

pages, and license files. In some cases these environment variables are different from the

environment variables that gcc* uses. With the Intel® C++ compiler, unlike gcc, these variables

Intel® Compilers for Linux*: Application Porting Guide

5

are not set by default after installing the compiler.. The following environment variables need to be

set prior to running the Intel® C++ Compiler:

 PATH – adds the location of the compiler binaries to PATH.

 LD_LIBRARY_PATH (Linux*) – sets the location of the compiler libraries as well as the

resulting binary generated by the compiler.

 DYLD_LIBRARY_PATH (OS X*) – sets the location of the compiler libraries as well as

the resulting binary generated by the compiler.

 MANPATH – adds the location of the compiler man pages (icc and icpc) to MANPATH.

 INTEL_LICENSE_FILE – sets the location of the Intel® C++ Compiler license file.

To set these environment variables, run the compilervars.sh script. Setting these environment

variables with compilervars.sh does not create a conflict with gcc. You should be able to use both

compilers in the same shell.

Modifying makefiles

If you use makefiles to build your gcc* application, you need to change the value of the CC

compiler variable to use the Intel® C++ compiler. You may also want to review the options

specified by CFLAGS. A simple example follows:

Sample gcc* makefile

Use gcc compiler

 CC = gcc

Compile-time flags

 CFLAGS = -O2 -std=c99

all: area_app

area_app: area_main.o area_functions.o

 $(CC) area_main.o area_functions.o -o area

area_main.o: area_main.c

 $(CC) -c $(CFLAGS) area_main.c

area_functions.o: area_functions.c

 $(CC) -c $(CFLAGS) area_functions.c

Intel® Compilers for Linux*: Application Porting Guide

6

Sample gcc* makefile

clean: rm -rf *o area

 Sample makefile modified for the Intel® C/C++ Compiler

Use Intel C compiler

 CC = icc

Compile-time flags

 CFLAGS = -std=c99

all: area_app

area_app: area_main.o area_functions.o

 $(CC) area_main.o area_functions.o -o area

area_main.o: area_main.c

 $(CC) -c $(CFLAGS) area_main.c

area_functions.o: area_functions.c

 $(CC) -c $(CFLAGS) area_functions.c

clean: rm -rf *o area

If your gcc* code includes features that are not supported with the Intel® C++ Compiler, such as

compiler options, language extensions, macros, pragmas, and so on, you can compile those

sources separately with gcc* if necessary.

The Intel® C++ Compiler uses the O2 option by default and gcc* uses the O0 option by default;

you can specify the option O0 with icc if required.

Using Optimization

The Intel® C++ Compiler is a highly optimizing compiler. With icc, there is an implicit assumption

that superior application performance on an Intel® architecture is important. Consequently,

certain optimizations, such as option O2, are part of the default invocation settings for the Intel®

C++ Compiler. Optimization is turned off in gcc by default, the equivalent of compiling with options

O or O0. Other forms of the O<n> option compare as follows:

Intel® Compilers for Linux*: Application Porting Guide

7

 Option Intel® C++ Compiler gcc*

-O0 Turns off optimization. Default. Turns off optimization.

-O1 Decreases code size with some

increase in speed.

Decreases code size with some increase

in speed.

-O2 Default. Favors speed optimization with

some increase in code size. Same as

option O. Intrinsics, loop unrolling, and

inlining are performed.

 Optimizes for speed as long as there is

not an increase in code size. Loop

unrolling and function inlining, for

example, are not performed.

-O3 Enables option O2 optimizations plus

more aggressive optimizations, such as

prefetching, scalar replacement, and

loop and memory access

transformations.

Optimizes for speed while generating

larger code size. Includes option O2

optimizations plus loop unrolling and

inlining. Similar to option O2 -ip on the

Intel® C++ Compiler.

Targeting Intel® Processors

While many of the same options that target specific processors are supported with both compilers,

Intel includes options that utilize processor-specific instruction scheduling to target the latest Intel®

processors. If you compile your gcc* application with the -march or -mtune option, consider using

the Intel® C++ Compiler -x or -ax options for applications that run on IA-32 architecture or Intel®

64 architecture.

Modifying Configurations

The Intel® C++ Compiler lets you maintain configuration and response files that are part of the

compilation process. Options stored in the configuration file apply to every compilation, while

options stored in response files apply only when they are added on the command line. If you have

several options in your makefile that apply to every build, you may find it easier to move these

options to the configuration file (../bin/icc.cfg and ../bin/icpc.cfg).

In a multi-user, networked environment, options listed in the icc.cfg and icpc.cfg files are generally

intended for everyone who uses the compiler. If you need a separate, single user, configuration,

you can use the ICCCFG or ICPCCFG environment variable to specify the name and location of

your own .cfg file, such as /my_code/my_config.cfg. Anytime you instruct the compiler to use a

different configuration file, the system configuration files (icc.cfg and icpc.cfg) are ignored.

Intel® Compilers for Linux*: Application Porting Guide

8

Using the Intel® Libraries

 Additional libraries that contain optimized implementations of many commonly used functions are

supplied with the Intel C++ Compiler. Some of these functions in the libraries are implemented

using CPU dispatch. With CPU dispatch, different code may be executed when run on different

processors.

Supplied libraries include the Intel® Math Library (libm), the Short Vector Math Library (libsvml),

libirc, as well as others. These libraries are linked in by default when the compiler sees that

references to them have been generated. Some library functions, such as sin or memset, may not

require a call to the library, since the compiler may inline the code for the function.

Using Optimized Math Function Library (libimf)

The math function library, libimf, is an optimized math library provided with the Intel Compilers.

The Intel Compilers link the libimf library first, and then the libm library. If an optimized version of a

function is available, the linker will find it in libimf. Otherwise, it will use the default version of the

function in the default Linux math library, libm.

Note: The Intel compiler always links to functions in the optimized libimf library if available,

regardless of whether the user specifies –lm on the link command line or if the user adds both

libimf and libm on the link line, regardless of the order.

Short Vector Math Library (libsvml)

When vectorization is being done, the compiler may translate some calls to the libm math library

functions into calls to libsvml functions. These functions implement the same basic operations as

the Intel® Math Library, but operate on short vectors of operands. This results in greater efficiency.

In some cases, the libsvml functions are slightly less precise than the equivalent libimf functions.

libirc

libirc contains optimized implementations of some commonly used string and memory functions.

For example, it contains functions that are optimized versions of memcpy and memset. The

compiler will automatically generate calls to these functions when it sees calls to memcpy and

memset. The compiler may also transform loops that are equivalent to memcpy or memset into

calls to these functions.

Compatibility with GNU Compiler

The Intel® C++ Compiler XE 2016 product is the successor to the Intel® C++ Composer XE

2015 product. The Intel® C and C++ compilers for Linux* provide excellent source, binary, and

command-line compatibility with the GNU* gcc and g++ compilers. The Intel C/C++ compilers for

Linux generate C/ C++ code that is binary compatible with gcc/g++ and requires a Linux

Intel® Compilers for Linux*: Application Porting Guide

9

distribution with a released version of gcc/g++ 4.1 or higher. In addition, compared to previous

versions, the Intel C/C++ compilers for Linux continue to improve the degree of compatibility with

the gnu gcc/g++ compilers, including the degree of compiler option compatibility.

Compatibility has been improved in multiple areas, some as a result of customer requests. Some

notably improved areas include:

 Improved gcc/g++/icc/icpc binary file interoperability , including third-party library

interoperability with gcc/g++ builit libraries.

 Support for generating C++ code compatible with g++ 4.1 or higher

 Support for building the Linux kernel with the Intel C++ Compiler

 Improved support for command-line options and build environments availabe with the

GNU compilers

The Intel® C/C++ compilers for Linux* support ANSI and ISO C and C++ standards, most GNU* C

and C++ language extensions, and the OpenMP* 4.0 standard. Intel® C++ Compiler XE 16

supports many features that are in the C++11 and C++14 standard - consult the compiler

documentation and C++11 Features Supported by Intel® C++ Compiler for details. The object

and binary files created by the Intel C/C++ Linux compiler are compatible with the C and C++

binary files created by the GNU gcc and g++ compilers versions 4.1 and later.

Building the Linux kernel with the Intel C/C++ Linux compiler is an ongoing effort at Intel. Some of

the objectives of the effort are to improve the degree of GNU source level compatibility, and to

improve kernel performance.

The Intel® Fortran Compiler 16.0 supports the Fortran 2003 and OpenMP* 4.0 standards, as well

as many features from Fortran 2008. For more details, consult the compiler release notes.

The Intel Fortran Compiler for Linux does not generate object files that are binary compatible with

object files generated by the GNU g77 or GNU gfortran compilers, nor is binary compatibility a

future goal of the Intel Fortran compiler. Instead, the Intel Fortran Compiler for Linux generates

object files that are binary compatible with C-language object files generated with either the Intel

C++ Compiler for Linux or the GNU gcc compiler.

Intel’s C/C++ and Fortran Compilers support a large number of the commonly used GNU compiler

command-line options. See the Command Line Options section of this document for details.

Intel® Compiler XE 2016 does not support development on or for IA-64 architecture (Intel®

Itanium®) systems. Intel® Compiler version 11.1 remains available to developt applications for

the IA-64 architecture..

http://software.intel.com/en-us/intel-software-technical-documentation
http://software.intel.com/en-us/intel-software-technical-documentation
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/

Intel® Compilers for Linux*: Application Porting Guide

10

We encourage customers to submit feature requests to improve compatibility through their Intel®

Premier Support accounts. See Customer Feedback below.

C and C++ Source Compatibility

Intel’s C/C++ Linux Compiler supports ANSI and ISO C and C++ standards. The compiler also supports

most GNU* C and C++ language extensions. The Intel compiler predefines the following macros based on

the version of gcc available at compilation time:

 __GNUC__

 __GNUC_MINOR__

 __GNUC_PATCHLEVEL__

 __GNUG__

You can disable these GNU predefined macros using the -no-gcc option; however, using this option is not

recommended because the system header files may not compile correctly. A new option, -gcc-sys, has

been added that is similar to the -no-gcc option, except that when you use the new option the GNU macros

are only defined when the compiler is preprocessing system header files, so that the code compiles

correctly. You can also use the Intel C/C++ Compiler macro, __INTEL_COMPILER to conditionally compile

code.

GNU inline-assembly format is supported on IA-32 and Intel® 64 architecture-based processors. The Intel

C/C++ Compiler implements a large number of gcc built-in functions, which are documented at

http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html. See the compiler documentation for information on

intrinsic functions and supported gcc built-in functions.

The Intel® compiler automatically detects the version of gcc being used. If a user specifies the -gcc-

name=/usr/bin/gcc43 (or gcc44, etc.), the compiler will automatically set the gcc-version accordingly. Most

users should never have a need to set it. By default, the Intel® compiler uses the version of gcc defined in

the PATH environment variable. Explicitly setting -gcc-name may be useful when you want to generate

code compatible with different versions of gcc installed on your system.

For more recent versions of g++, contact Intel through your Intel® Premier Support account for additional

information.

Starting in version 11.0, the Intel(R) C++ Compiler has supported some of the C++11 features. With the

latest release of Intel C++ Compiler XE for Linux* and Mac OS* X more C++11 features are supported.

The detailed supported features are listed at http://software.intel.com/en-us/articles/c0x-features-

supported-by-intel-c-compiler/.

http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html
http://software.intel.com/en-us/intel-software-technical-documentation
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/
http://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-compiler/

Intel® Compilers for Linux*: Application Porting Guide

11

OpenMP* Compatibility and Interoperability

The term object-level interoperability refers to the ability to link object files generated by one compiler with

object files generated by a second compiler, such that the resulting executable runs correctly. We call an

OpenMP program compatible with a compiler if the level of OpenMP support required by the program is

less than or equal to the level of OpenMP support offered by the compiler.

The Intel® Compiler, versions 11.0 and later, are object level interoperable with GNU* compiler versions

4.1 and later. Versions 11.0 and 12.0 provide support for OpenMP 3.0 and versions 12.1, 13.0 provide

support for OpenMP 3.1. Intel compiler version 14.0 has added partial support for OpenMP 4.0 and Intel

compiler version 16.0 supports OpempMP 4.0 completely.

You should determine the level of OpenMP support that each file of your program requires, and use a

compatible and object-level interoperable compiler to compile the code, producing one or more object files.

You should then link all object files together with a single compiler, to produce the executable file. The

compiler you choose for the link step will determine which runtime libraries are used during execution.

Binary Compatibility

Intel® C++ Compiler XE 16.0 provides C and C++ binary compatibility with released versions of gcc

including gcc 4.1 and later. The default C++ library implementation uses the gcc provided C++ libraries.

The Intel C++ Compiler for Linux and GNU compilers both conform to the C++ ABI (Application Binary

Interface), a convention for binary object code interfaces between C++ code and the implementation-

provided system and runtime libraries. Consult http://gcc.gnu.org/releases.html for information on the latest

gcc releases. The goal is to implement a stable ABI for C++ applications and libraries, which will benefit

the Linux community.

Intel C++ Compiler XE 16.0 uses the C++ runtime libraries/files provided by gcc. The gcc C++ runtime

libraries/files include the libstdc++, standard C++ header files, library, and language support. By default,

C++ code generation is compatible with the code generation of the version of gcc specified in the PATH

environment variable. The compiler option –gcc-name allows specifying the full-path location of gcc. Use

this option if you are using a version of gcc that has a non-standard installation location.

The following examples demonstrate binary compatibility with g++ and usage of the g++ runtime libraries.

Figure 1 shows the building of the “Hello World” example program.

prompt> cat hello.cxx

 #include <iostream>

 int main(){ std::cout<<“Hi”<<std::endl; }

prompt> icpc hello.cxx

http://www.codesourcery.com/cxx-abi/
http://gcc.gnu.org/releases.html

Intel® Compilers for Linux*: Application Porting Guide

12

Figure 1. “Hello World” Example using the default run time libraries

Figure 2 shows the default run-time libraries that are linked against when building applications on an Intel®

64 architecture-based system, including the g++ provided C++ runtime libraries. The g++ libraries are the

standard GNU* C++ library, libstdc++, and C++ language support libraries.

The system utility, ldd, is used to show the dynamic libraries linked to the application, and the awk utility is

used to make the output easier to read in this paper.

prompt> ldd a.out | awk '{print $1}'

linux-vdso.so.1

libm.so.6

libstdc++.so.6

libgcc_s.so.1

libc.so.6

libdl.so.2

/lib64/ld-linux-x86-64.so.2

Figure 2. Default run time libraries linked against “Hello World” example program

The example in Figure 3 demonstrates C++ binary compatibility with g++ by mixing binary files created by

g++ and the Intel C++ Compiler.

prompt> cat main.cxx

void pHello();

int main() { pHello(); }

prompt> cat pHello.cxx

#include <iostream>

void pHello()

{ std::cout << “Hello” << std::endl; }

prompt> icpc –c main.cxx

prompt> g++ –c pHello.cxx

prompt> icpc main.o pHello.o

prompt> ./a.out

Hello

Figure 3. Mixing Binary Files Created by g++ and the Intel® C++ Compiler

Figure 4 shows how initially mixing binary files created by g++ and by the Intel C++ Compiler and using

g++ to link them fails. Intel recommends linking by invoking the Intel Compiler to correctly pass the Intel

libraries to the system linker, ld. On IA-32 and Intel® 64 architecture-based processors, the Intel C++

Intel® Compilers for Linux*: Application Porting Guide

13

Compiler calls the function __intel_new_proc_init from the main routine to determine the ability to run

processor-specific code. This routine is found in the Intel library libirc. To link this example correctly, libirc

needs to be added to the link command. Different compiler optimizations, such as OpenMP* and

vectorization, may require additional libraries provided by the Intel C/C++ Compiler.

Linking with the Intel Compiler removes the necessity of knowing the details of which Intel libraries are

required, provided the same compiler options are used when compiling and linking. Without passing the

correct libraries and library location, the initial link fails. For the example in Figure 4, linking with the Intel

libirc library is required.

prompt> icpc –c main.cxx

prompt> g++ –c pHello.cxx

Fails without Intel provided libraries

prompt> g++ main.o pHello.o

main.o: In function `main':

main.cxx:(.text+0x17): undefined reference to `__intel_new_feature_proc_init'

collect2: ld returned 1 exit status

Links with g++ and explicitly list

Intel provided libraries in the default

library location for release 13.0

prompt> g++ main.o pHello.o -L/opt/intel/compilers_and_libraries_2016.0.089/linux/compiler/lib/intel64/ -

lirc

prompt> ./a.out

Hello

Recommended usage

prompt> icpc main.o pHello.o

prompt> ./a.out

Hello

Figure 4. Example of Linking Using g++

Linking and Libraries

Linking C Language with Intel® Compiler and gcc Compiler

C-language object files can be linked with either Intel Compilers or gcc compilers. Linking with an Intel

Compiler is recommended, as the Intel libraries will be correctly passed to the linker. The examples shown

in Figure 5 through 10 use gcc to link the application with the file main.c, compiled with gcc, and the file

calcSin.c, compiled with the Intel C/C++ Compiler.

Intel® Compilers for Linux*: Application Porting Guide

14

Figure 5 illustrates code that uses the Intel Compiler to automatically vectorize the loop in calcSin.c when

the C99 restrict keyword is used and enabled via a command-line option.

prompt> cat calcSin.c

#include <math.h>

void calcSin(double *a,double * restrict b, int N)

{

 int i;

 for (i=0; i<N; i++)

 b[i] = sin(a[i]);

}

prompt> icc -c -xHost calcSin.c -qopt-report -qopt-report-phase=vec -restrict

icc: remark #10397: optimization reports are generated in *.optrpt files in the output location

prompt>cat calcSin.optrpt

Intel(R) Advisor can now assist with vectorization and show optimization report messages with your source

code.

See "https://software.intel.com/en-us/intel-advisor-xe" for details.

Begin optimization report for: calcSin(double *, double *__restrict__, int)

 Report from: Vector optimizations [vec]

LOOP BEGIN at calcSin.c(4,3)

<Peeled loop for vectorization>

LOOP END

LOOP BEGIN at calcSin.c(4,3)

 remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at calcSin.c(4,3)

<Remainder loop for vectorization>

LOOP END

===

Figure 5. Compiling C Language Function with the Intel® C++ Compiler, using the -restrict

command line option to enable usage of the C99 keyword restrict.

The main function is compiled with gcc as shown by code in Figure 6.

prompt> cat main.c

Intel® Compilers for Linux*: Application Porting Guide

15

void calcSin(double *a,double *b,int N);

 int main() {

 const int N=100000;

 double a[N], b[N], c[N], x[N];

 int i;

 for (i=0;i<N;i++)

 a[i] = i;

 for (i=0;i<100;i++)

 calcSin(a, b, N); }

prompt> gcc -c main.c

Figure 6. Main Function Compiled with gcc

The application is linked with gcc and the necessary libraries from the Intel Compiler are passed to gcc. In

the example in Figure 7, the short vector math library, libsvml, and the optimized math function library,

libimf, both provided by Intel, are required to link with gcc.

prompt> gcc main.o calcSin.o -

L/opt/intel/compilers_and_libraries_2016.0.089/linux/compiler/lib/intel64/ -lirc -lsvml -limf -o

calSin

Figure 7. Linking With gcc Using Additional Intel Provided Libraries: libsvml and libimf

If the Intel libraries are not passed to gcc, the link fails with undefined references, as shown in Figure 8.

Not recommended

prompt> gcc main.o calcSin.o -o calSin

calcSin.o: In function `calcSin':

calcSin.c:(.text+0x96): undefined reference to `__svml_sin4'

calcSin.c:(.text+0xc5): undefined reference to `__svml_sin4'

calcSin.c:(.text+0xf0): undefined reference to `__svml_sin4'

collect2: ld returned 1 exit status

Figure 8. Failed Link Due to Missing Libraries When Linking With gcc

The nm utility can determine the names of unresolved symbols provided in the Intel libraries. Running the

nm utility on the Intel libraries helps determine which libraries are required. See the Intel C++ and Fortran

User’s Guides, library section, for documentation on the different Intel libraries. Next, the grep utility

(Figure 9) verifies that the symbols are defined in the Intel libraries. Examine the symbol file, icc-

symbols.txt, to determine which library contains the missing symbols and then addthem to the link options.

prompt> nm

/opt/intel/compilers_and_libraries_2016.0.089/linux/compiler/lib/intel64* >

icc-symbols.txt

http://software.intel.com/en-us/articles/intel-software-technical-documentation/
http://software.intel.com/en-us/articles/intel-software-technical-documentation/

Intel® Compilers for Linux*: Application Porting Guide

16

prompt> grep "__svml_sin4$" icc-symbols.txt

0000000000000000 T __svml_sin4

Figure 9. Utilities to Determine Libraries Required to Link with gcc Correctly

Link with the Intel Compiler, passing the same options (-xHost in Figure 10) used during compilation, to

avoid the necessity of finding out which Intel supplied libraries are required.

#Recommended usage

prompt> gcc -c main.c

prompt> icc -c –xHost calcSin.c -restrict

prompt> icc calcSin.o main.o

Figure 10. Avoiding Missing Libraries when Linking: Use Intel® C++ Compiler with the Same

Options as Used During Compilation

Intel® Compiler Linking Conventions/Changing Default Linking Behavior

This section describes linking conventions used by the Intel Compilers for Linux and compiler options for

changing the default behavior. The icc compiler driver links the C++ runtime libraries if and only if the input

source files have C++ file extensions. The icpc compiler driver is meant to be used for C++ files, and it

automatically links in the C++ runtime libraries, similar to the behavior of g++.

By default, Intel Compilers for Linux use the Dynamic Shared Object (DSO) versions, also known as

shared libraries, of the Linux system libraries. For the Intel provided libraries, by default, the DSO versions

of OpenMP and libcxaguard, the g++ compatibility support libraries are used, and static versions of all

other Intel libraries are used. With user-provided libraries, the compiler searches for a DSO version first. If

no DSO version is found, it searches for a static version.

The following command line options modify the default linking behavior:

 –Bstatic: Uses the static version of all libraries specified after this point or until the option

“–Bdynamic” is used. This option can be used to statically link all libraries.

 –Bdynamic: Uses dynamic (DSO) version of all libraries specified after this point or until the

“–Bstatic” option is used. Note that –Bstatic and –Bdynamic are toggles.

 -static-intel: Statically links all compiler libraries provided by Intel. Use this option to avoid the need to

redistribute the Intel compiler libraries with your application.

 -shared-intel: Dynamically links all compiler libraries provided by Intel. In other words, use DSO

versions of Intel libraries.

 –shared: Instructs the linker to create a DSO instead of an application binary.

The ldd utility lists the DSOs that an application is linked with and is useful in understanding the command-

line options described previously.

Intel® Compilers for Linux*: Application Porting Guide

17

Build Environment Enhancements

The Intel C++ Compiler continues to improve compatibility with different gcc build environments. The

ability to use the GNU C++ library on systems with non-standard gcc configurations has been improved.

The Intel Compiler installation supports the traditional installation process with root account access using

rpm as well as the non-root account installation process that doesn’t use the rpm package manager.

The following GNU environment variables are supported:

 CPATH: Path to include directory for C/C++ compilations.

 C_INCLUDE_PATH: Path to include directory for C compilations.

 CPLUS_INCLUDE_PATH: Path to include directory for C++ compilations.

 DEPENDENCIES_OUTPUT: If this variable is set, its value specifies how to output dependencies for

make based on the non-system header files processed by the compiler. System header files are

ignored in the dependency output.

 GCC_EXEC_PREFIX: This variable specifies alternative names for the linker (ld) and assembler (as).

 LIBRARY_PATH: The value of LIBRARY_PATH is a colon-separated list of directories, much like

PATH.

 SUNPRO_DEPENDENCIES: This variable is the same as DEPENDENCIES_OUTPUT, except that

system header files are not ignored.

 GXX_INCLUDE: Specifies the location of the gcc headers. Set this variable only when the compiler

cannot locate the gcc headers when using the -gcc-name option.

 GXX_ROOT: Specifies the location of the gcc binaries. Set this variable only when the compiler cannot

locate the gcc binaries when using the -gcc-name option.

Command Line Options

The Intel C++ Compiler for Linux supports a large number of common GNU* compiler command-line

options. Information on Intel C++ command options can be found in the compiler documentation, compiler

man pages, and summary information via icc –help.

The following options have been added that deal with GNU compatibility. The option -gcc-sys is similar to

-no-gcc (which tells the compiler not to predefine the __GNUC__, __GNUC_MINOR__, and

__GNUC_PATCHLEVEL__ macros), except that the GNU macros are only defined when preprocessing

system header files. The option -pragma-optimization-level=[Intel|GCC] enables / disables processing

#pragma optimize using Intel (default) or gcc syntax.

Intel compiler supports strict ansi checking; -ansi provides compatibility with gcc’s –ansi switch and –strict-
ansi provides more strict ansi checking than is available from gcc.

Intel® Compilers for Linux*: Application Porting Guide

18

Note that the Intel C++ and Fortran Compilers have a large number of features to optimize applications for

the latest Intel processors. The topic “Optimization and Programming Guide” in “Intel® C++ Compiler

16.0 User and Reference Guide” explains how to use Intel Compilers to optimize for the latest Intel

processors.

Intel encourages customers to submit feature requests for command-option compatibility through their Intel

Premier Support account. See Customer Feedback below.

Intel® Fortran Compiler

The Intel® Fortran Compiler supports all of the Fortran 2003 standard as well as a large part of Fortran

2008, including coarrays and DO CONCURRENT. The Intel Fortran Compiler for Linux is not binary

compatible with the GNU g77 or gfortran compiler. In general, Fortran compilers are not binary compatible

because they use different runtime libraries. Intel Fortran Compiler is binary compatible with C-language

object files created with either the Intel C++ Compiler for Linux or the GNU gcc compiler. Your application

can contain both C and Fortran source files. If your main program is a Fortran source file (myprog.for) that

calls a routine written in C (cfunc.c), you can use the following sequence of commands to build your

application.

#Recommended usage

prompt> icc -c cfunc.c

prompt> ifort -c myprog.for

prompt> ifort -o myprog myprog.o cfunc.o

Figure 11. Linking: C Compiler and Fortran compiler generated objects files

Use the -nofor_main compiler option if your C/C++ program contains the main() entry point and is calling

an Intel® Fortran subprogram. The Intel Fortran Compiler documentation has further details on calling C

language functions from within Fortran code.

The Intel Fortran Compiler for Linux uses a different name-mangling scheme than the GNU Fortran

compiler. Intel does not recommend mixing object files created by the Intel Fortran Compiler and the GNU

Fortran compiler.

Customer Feedback

Intel is committed to providing compilers that deliver the highest Linux-based application performance for

applications running on platforms that use the latest Intel processors. Intel Premier Support is included with

Intel® Compilers for Linux*: Application Porting Guide

19

every purchased compiler; see https://software.intel.com/en-us/intel-parallel-studio-xe-support for more

information.

Intel strongly values customer feedback and is interested in suggestions for improved compatibility with the

GNU compilers. If your applications require additional compatibility features, please submit a feature

request by creating a customer-support issue through your Intel Premier Support account that explains

your request and its impact.

Developers should register for an Intel Premier Support account to obtain technical support and product

updates. The product-release notes describe how to register.

References

 General information on Intel® software development tools, including the Intel C++ and Fortran

Compilers: https://software.intel.com/en-us/intel-parallel-studio-xe

 Intel® C++ and Fortran Compiler documentation is available at https://software.intel.com/en-us/intel-

parallel-studio-xe-support/documentation

 The OpenMP standard: http://www.openmp.org

 ANSI C and C++ standards: http://www.ansi.org

 The GNU project including GNU gcc and gfortran compilers and glibc, the GNU C library:

http://www.gnu.org

 Conventions for object code interfaces between C++ code and implementation-provided system and

libraries: http://mentorembedded.github.com/cxx-abi/

https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/intel-parallel-studio-xe-support/documentation
https://software.intel.com/en-us/intel-parallel-studio-xe-support/documentation
http://www.openmp.org/
http://www.ansi.org/
http://www.gnu.org/

For product and purchase information visit:

www.intel.com/software/products

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO

LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL

PROPERTY RIGHTS IS GRANTED

BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY

EXPRESS OR IMPLIED WARRANTY,

RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES

RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT

OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN

WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION

WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked “reserved” or

“undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to change

without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may

cause the product to deviate from published specifications. Current

characterized errata are available on request. Contact your local Intel sales

office or your distributor to obtain the latest specifications and before placing

your product order. Copies of documents which have an order number and

are referenced in this document, or other Intel literature, may be obtained by

calling 1-800-548-4725, or by visiting Intel’s Web site at www.intel.com.

Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel. Leap ahead., Intel. Leap

ahead. logo, and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/

